
APPENDIX D: Dynamic Programming 655

where expectation is with respect to and note that

Now substituting and taking expectations with respect to on both
sides above we obtain

which gives us a recursion exactly of the form (D.3).
Note, however, that by using this transformation we have reduced the original

dynamic programming recursion from one with a state space to one with only
a state space of The function has a similar interpretation as for this
reduced state—namely, it is the optimal expected reward-to-go from time onward
given we are in the reduced state at time where still uncertain (recall

Indeed, one can think of this new recursion as propagating
the system in two stages: first, the state x is realized but y remains uncertain. We
measure the optimal expected reward at this point, yielding Then the value

is realized, and we make our optimal decision. This takes us to a new
state and the process repeats. Finally, note that this reduced-form recursion
results in an optimization step of the form E[max{ }] rather than the max E[{ }]
found in traditional dynamic programming formulations.

Here’s a typical example of how this transformation arises in RM. Suppose is
a scalar capacity, is the revenue of the request in period and if we
decide to accept a request and zero otherwise. So the reward function is simply

Capacity evolves according to the system equation

and the revenue is driven by a random process

Formulated in traditional terms, we obtain

However, with the transformation above, we can rewrite this in observable-disturbance
form as

Since most dynamic programs in RM are of this observable-disturbance form, we
typically use the simpler E[max{ }] rather than the traditional max E[{ }] form.


