APPENDIX D: Dynamic Programming 655

where expectation is with respect to w(t) = w(t + 1), and note that

V}(X,y) = glljaz()E[gl(x1u1y)+W+1(ft(x)u)y)’w(t))]
u€elUs(x
= Jmax {9e(x,u,y) + E[Ves1(fe(x, u,y), w(t)]}
= ugbaz(x) {g:(x, u,y) + Gt+1(f¢(x, Ua)’))} .

Now substituting y = w(t) and taking expectations with respect to w(t) on both
sides above we obtain

Gux) = B | max {0406, 0,w(0) + Gon (o m wit)} |

which gives us a recursion exactly of the form (D.3).

Note, however, that by using this transformation we have reduced the original
dynamic programming recursion from one with a state space S; x W, to one with only
a state space of S;. The function G¢(x) has a similar interpretation as Vi(x,y) for this
reduced state—namely, it is the optimal expected reward-to-go from time t onward
given we are in the reduced state x(t) at time t, where y = w(t) still uncertain (recall
Gy(x) = E[Vi(x,w(t))]). Indeed, one can think of this new recursion as propagating
the system in two stages: first, the state x is realized but y remains uncertain. We
measure the optimal expected reward at this point, yielding G¢(x). Then the value
y = wi(t) is realized, and we make our optimal decision. This takes us to a new
state x(¢-+1), and the process repeats. Finally, note that this reduced-form recursion
results in an optimization step of the form E[max{ }] rather than the max E[{ }]
found in traditional dynamic programming formulations.

Here’s a typical example of how this transformation arises in RM. Suppose z(t) is
a scalar capacity, y(t) is the revenue of the request in period ¢, and u(t) = 1 if we
decide to accept a request and zero otherwise. So the reward function is simply

y(t)u(t).
Capacity evolves according to the system equation
z(t + 1) = z(t) — u(t),
and the revenue is driven by a random process
y(t+1) = w(t+1).
Formulated in traditional terms, we obtain

Vi(z,y) = e Eyu + Vg1 (2 — u, w(t))].

However, with the transformation above, we can rewrite this in observable-disturbance
form as

Gi(z)=E uﬁ%ﬁ){w(t)“+c‘“(z_“)} -

Since most dynamic programs in RM are of this observable-disturbance form, we
typically use the simpler E[max{ }] rather than the traditional max E[{ }] form.

