where expectation is with respect to $\tilde{\mathbf{w}}(t) = \mathbf{w}(t+1)$, and note that

$$V_t(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{u} \in U_t(\mathbf{x})} E\left[g_t(\mathbf{x}, \mathbf{u}, \mathbf{y}) + V_{t+1}(\mathbf{f}_t(\mathbf{x}, \mathbf{u}, \mathbf{y}), \tilde{\mathbf{w}}(t))\right]$$

=
$$\max_{\mathbf{u} \in U_t(\mathbf{x})} \left\{g_t(\mathbf{x}, \mathbf{u}, \mathbf{y}) + E[V_{t+1}(\mathbf{f}_t(\mathbf{x}, \mathbf{u}, \mathbf{y}), \tilde{\mathbf{w}}(t))]\right\}$$

=
$$\max_{\mathbf{u} \in U_t(\mathbf{x})} \left\{g_t(\mathbf{x}, \mathbf{u}, \mathbf{y}) + G_{t+1}(\mathbf{f}_t(\mathbf{x}, \mathbf{u}, \mathbf{y}))\right\}.$$

Now substituting $\mathbf{y} = \mathbf{w}(t)$ and taking expectations with respect to $\mathbf{w}(t)$ on both sides above we obtain

$$G_t(\mathbf{x}) = E\left[\max_{\mathbf{u}\in U_t(\mathbf{x})} \{g_t(\mathbf{x},\mathbf{u},\mathbf{w}(t)) + G_{t+1}(\mathbf{f}_t(\mathbf{x},\mathbf{u},\mathbf{w}(t)))\}\right],$$

which gives us a recursion exactly of the form (D.3).

- .

Note, however, that by using this transformation we have reduced the original dynamic programming recursion from one with a state space $S_t \times W_t$ to one with only a state space of S_t . The function $G_t(\mathbf{x})$ has a similar interpretation as $V_t(\mathbf{x}, \mathbf{y})$ for this reduced state—namely, it is the optimal expected reward-to-go from time t onward given we are in the reduced state $\mathbf{x}(t)$ at time t, where $\mathbf{y} = \mathbf{w}(t)$ still uncertain (recall $G_t(\mathbf{x}) = E[V_t(\mathbf{x}, \mathbf{w}(t))]$). Indeed, one can think of this new recursion as propagating the system in two stages: first, the state \mathbf{x} is realized but \mathbf{y} remains uncertain. We measure the optimal expected reward at this point, yielding $G_t(\mathbf{x})$. Then the value $\mathbf{y} = \mathbf{w}(t)$ is realized, and we make our optimal decision. This takes us to a new state $\mathbf{x}(t+1)$, and the process repeats. Finally, note that this reduced-form recursion results in an optimization step of the form $E[\max\{\}]$ rather than the max $E[\{\}]$ found in traditional dynamic programming formulations.

Here's a typical example of how this transformation arises in RM. Suppose x(t) is a scalar capacity, y(t) is the revenue of the request in period t, and u(t) = 1 if we decide to accept a request and zero otherwise. So the reward function is simply

y(t)u(t).

Capacity evolves according to the system equation

$$x(t+1) = x(t) - u(t),$$

and the revenue is driven by a random process

$$y(t+1) = w(t+1).$$

Formulated in traditional terms, we obtain

$$V_t(x,y) = \max_{u \in \{0,1\}} E\left[yu + V_{t+1}(x-u,w(t))\right].$$

However, with the transformation above, we can rewrite this in observable-disturbance form as

$$G_t(x) = E\left[\max_{u \in \{0,1\}} \{w(t)u + G_{t+1}(x-u)\}\right]$$

Since most dynamic programs in RM are of this observable-disturbance form, we typically use the simpler $E[\max{}]$ rather than the traditional max $E[{}]$ form.

_